T	TCP/IP E LE RETI		
TCP/IP ed altri protocolli			
	Strati LAN	5	
	NetBIOS e TCP/IP	10	
	XNS e TCP/IP	12	
	IPX e UDP	14	
	ARCnet eTCP/IP	16	
	Reti FDDI	17	
	X.25 e IP	18	
	ISDN e TCP/IP	20	
	Switched Multi-Megabit Data Services e IP	21	
	Asynchronous Transfer Mode (ATM) e BISDN	22	
	Windows e TCP/IP	22	
Servizi TCP/IP opzionali		27	
	Active Users	28	
	Character Generator	28	

TCP/IP E LE RETI

TCP/IP ed altri protocolli

TCP/IP non è trovato spesso come un protocollo isolato. Esso è spesso uno di diversi protocolli usati in ogni rete. Perciò, l'interazione fra TCP/IP e gli altri protocolli che potrebbero lavorare con esso deve essere ben compresa. È più facile comprendere questo argomento partendo dal punto di vista di una rete locale¹ e poi espander il discorso agli internet.

Gli strati di un protocollo TCP/IP, così come di altri protocolli appartenenti al modello OSI², sono disegnati per essere dipendenti l'uno dall'altro, abilitando la miscelazione di protocolli. Quando un messaggio³ deve essere mandato lungo la rete ad una macchina remota⁴, ogni strato⁵ del protocollo costruisce sul pacchetto di informazioni inviato dallo strato superiore, aggiungendo il suo header personale e poi passando il pacchetto al suo strato inferiore. Dopo essere stato ricevuto

¹ Local area network

OSI model

OSI model protocols

protocol layer

² OSI

³ message

⁴ remote machine

⁵ <u>layer</u>

(impacchettato⁶ in qualunque formato di rete⁷ richiesto), il pacchetto viene mandato su per gli strati della macchina ricevente, con la rimozione delle informazioni di header ad ogni strato.

Il rimpiazzo di ogni strato nello stack del protocollo richiede che i nuovi protocolli possono interconnettersi⁸ con gli altri strati , così come di effettuare tutte le funzioni richieste da quello strato.

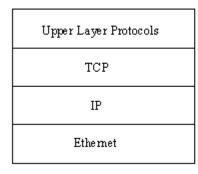
Per esaminare l'interconnessione degli strati e la sostituzione o l'aggiunta di altri, si può usare una semplice installazione⁹ come punto di partenza. La figura seguente mostra una semplice architettura¹⁰ a strati usando TCP e IP con una rete Ethernet. La figura mostra inoltre l'assemblaggio dei pacchetti Ethernet¹¹ mentre essi passano da uno strato all'altro.

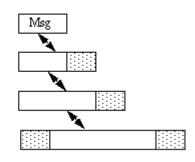
_

internetworking

layered architecture

⁶ packaged


⁷ network format

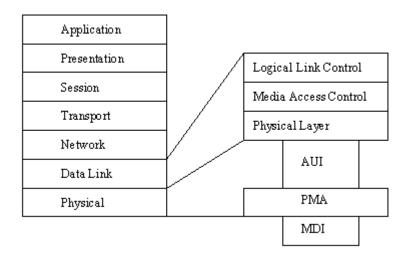

⁸ internetwork

⁹ <u>installation</u>

¹⁰ architecture

¹¹ Ethernet packets

Il processo inizia con un messaggio di qualche forma dal Upper Layer Protocol ¹²(ULP), il quale sta a sua volta passando il messaggio da qualche applicazione ¹³. Quando il messaggio è passato a TCP, esso aggiunge le sue informazioni di header e lo passa allo strato IP, che fa la stessa cosa. Quando il messaggio IP è passato allo strato Ethernet, Ethernet aggiunge le sue informazioni davanti e dietro al pacchetto e manda il messaggio in rete.


Sebbene questo semplice modello possa sembrare ideale, esso presenta alcuni problemi. Il più importante è che esso richiede che IP si interfacci direttamente con lo strato Ethernet. Questa interfaccia npn è pulita ma ha molte connessioni che rompono con l'architettura ideale a strati.

12 Upper Laver Protocol

¹³ application

Strati LAN14

Ora occorre una migliore comprensione dell'interfaccia¹⁵ verso lo strato di rete in una LAN. La figura seguente mostra una architettura a strati di una LAN espansa. Questo tipo di architettura si applica a reti CSMA¹⁶ (collision sense multiple access¹⁷) e CD¹⁸ (collision detect¹⁹) come Ethernet.

Una LAN coinvolge alcuni strati addizionali. Lo strato Logical Link Control $^{20}(LLC^{21})$ è un'interfaccia tra lo strato IP e lo strato di rete. Vi sono diversi tipi di configurazioni LLC, ma è sufficiente a questo punto conoscere il suo ruolo di base

LAN layers

5

¹⁴ <u>LAN</u>

¹⁵ interfaces

¹⁶ CSMA

¹⁷ collision sense multiple access

¹⁸ CD

¹⁹ collision detect

²⁰ Logical Link Control

²¹ LLC

come buffer tra la rete e lo strato IP sia come un semplice sistema per un servizio senza connessione²² sia come un sistema elaborato per un servizio basato sulla connessione²³. LLC è usualmente usato con il collegamento standard High Level Data Link Control²⁴ (HDLC²⁵).per servizi non orientati alla connessione esso usa il frame di messaggi²⁶ unnambered information²⁷ (UI), mentre servizi basati sulla connessione usano il frame ABM²⁸ (asynchronous²⁹ balanced mode³⁰), supportati entrambi da HDLC. La configurazione di LLC rispetto a TCP/IP è importante.

Lo strato MAC³¹ (Media Access Control³²) è responsabile della gestione del traffico sulla rete , come il rilievo delle collisioni³³ e i tempi di trasmissione³⁴ . esso inoltre gestisce i timer³⁵ e le funzioni di ritrasmissione³⁶ . MAC è indipendente dal mezzo³⁷ usato dalla rete ma dipende dal protocollo usato dalla rete.

²² connectionless service

²³ connection-based service

²⁴ High Level Data Link Control

²⁵ HDLC

²⁶ message frame

²⁷ <u>unnambered information</u>

²⁸ <u>ABM</u>

²⁹ asynchronous

³⁰ asynchronous balanced mode

³¹ MAC

³² Media Access Control

³³ collision detection

³⁴ transmission times

³⁵ timers

LO strato fisico nell'architettura della rete è composto di diversi servizi. La Attachment Unit Interface³⁸ (AUI) fornisce un collegamento tra lo strato fisico della macchina e il mezzo della rete. Tipicamente il AUI³⁹ si trova dove sono localizzate le porte o jack.

IL Medium⁴⁰ Attachment⁴¹ Unit⁴² (MAU) si compone di due parti: il Physical ⁴³Medium Attachment ⁴⁴(PMA⁴⁵) e il Medium Dependent Interface⁴⁶ ⁴⁷(MDI⁴⁸). il MAU è responsabile di gestire la connessione della macchina al mezzo stesso della LAN, così come di fornire controlli di base sull'integrità dei dati⁴⁹ e il monitoraggio del mezzo della rete. Il MAU ha funzioni che controllano la qualità del segnale⁵⁰ della rete e testano le routine per verificare la correttezza delle operazioni della rete.

³⁶ retransmission functions

³⁷ network medium

³⁸ Attachment Unit Interface

³⁹ <u>AUI</u>

⁴⁰ Medium

⁴¹ Attachment

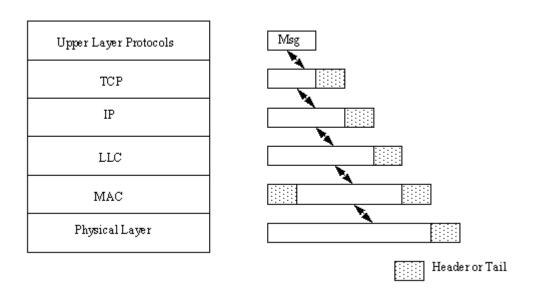
⁴² Medium Attachment Unit

⁴³ Physical

⁴⁴ Physical Medium Attachment

⁴⁵ PMA

⁴⁶ Interface


⁴⁷ Medium Dependent Interface

⁴⁸ MDI

⁴⁹ data integrity checking

⁵⁰ signal quality

Quando questi strati vengono aggiunti all'architettura a strati di uno stack di protocollo, lo strato IP-Ethernet viene separato. Ciò è mostrato nella figura seguente . questo tipo di configurazione è più comune di quello mostrato nella figura precedente ed è usualmente chiamato configurazione IP/802 (poiché Ethernet è definita dalla specifica⁵¹ IEEE⁵² 802⁵³).

La LAN IP/802 può essere non orientata alla connessione usando una forma semplice di LLC chiamata LLC Tipo \mathfrak{f}^{54} , che supporta Unnambered Information (UI). Gli strati LLC e MAC aiutano a separare IP dallo strato fisico. Sono aggiunti più header al pacchetto del messaggio , ma hanno informazioni utili. L'header LLC contiene i

51 specification

⁵² <u>IEEE</u>

⁵³ IEEE 802

⁵⁴ LLC Type 1

service access point⁵⁵ (SAP⁵⁶) sia della sorgente che del destinatario per identificare gli strati superiori.

Si usa frequentemente UDP invece di TCP in questo tipo di reti. UDP non è complesso come TCP per cui si riduce la complessità complessiva dell'intera rete. Comunque, UDP non ha funzioni di controllo dell'integrità dei dati al suo interno, così si usa una differente forma di LLC (chiamata LLC Tipo 2^{57}) per implementare queste funzioni. LLC tipo 2 fornisce la funzionalità di integrità dei dati che è usualmente fornita da TCP, come il sequenziamento⁵⁸, la gestione delle finestre di trasferimento⁵⁹, e il controllo di flusso⁶⁰. LO svantaggio è che queste funzioni si trovano ora sotto lo strato IP e non sopra. In caso di problemi fatali con strati LLC, questo può risultare in problemi che devono essere gestiti poi dallo strato di applicazione⁶¹.

Le differenze fra TCP e LLC 1 rispetto a UDP e LLC 2devono essere accuratamente soppesate da un amministratore di sistema. La combinazione TCP/LLC 1è più

55 service access points

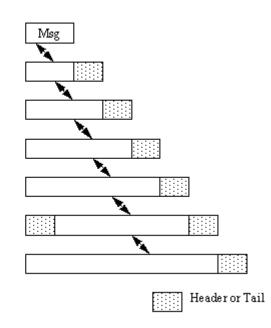
⁵⁶ SAP

⁵⁷ LLC Type 2

⁵⁸ sequencing

⁵⁹ transfer window management

⁶⁰ flow control


⁶¹ application layer

complessa di UDP/LLC 2 ma offre eccellente affidabilità⁶² e integrità⁶³, mentre UDP/LLC 2 è migliore per reti ad elevato throughput⁶⁴.

NetBIOS⁶⁵ e TCP/IP

NetBIOS è un popolare sistema operativo per reti orientate al PC, che può essere facilmente integrato con TCP/IP. La figura seguente mostra l'architettura di rete per questo tipo di LAN. NetBIOS risiede sopra il protocollo TCP o UDP, sebbene abbia usualmente solidi legami in quello strato(così che i due non possono facilmente essere separati). NetBIOS agisce connettendo applicazioni negli strati superiori, fornendo messaggeria e allocazione delle risorse.

Upper Layer Protocols
NetBIOS
TCP/UDP
IP
LLC
MAC
Physical Layer

⁶² reliability

63 integrity

⁶⁴ throughput

65 NetBIOS

10

Sono allocate tre porte Internet per NetBIOS. Esse sono la porta 137 per il servizio di nome⁶⁶ NetBIOS⁶⁷, la porta 138 per il servizio datagrammi^{68 69}, la porta 139 per il servizio di sessione^{70 71 72}. Vi è anche la possibilità di un mappaggio tra il Domain Name Service di Internet e il NetBIOS Name Server^{73 74} (NBNS). Il NetBIOS name server è usato per identificare PC che operano in un'area NetBIOS. Nell'interfaccia fra NetBIOS e TCP, il mappaggio ⁷⁵ fra i nomi è usato per produrre il nome DNS. IIP può essere configurato per operare al di sopra di NetBIOS, eliminando interamente TCP e UDP e usando NetBIOS come un servizio non orientato alla connessione. In questo caso Net BIOS rileva le funzioni dello strato TCP/UDP e i protocolli degli strati superiori devono avere le funzioni di integrità dei dati, sequenziamento del pacchetto, controllo di flusso. Questo è mostrato nella figura seguente . in questa architettura NetBIOS incapsula i datagrammi IP. È necessario un mappaggio forte fra IP e NetBIOS così che i pacchetti NetBIOS riflettono gli

indirizzi IP:.

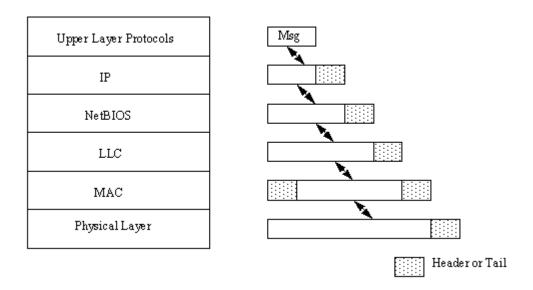
⁶⁶ name service

⁶⁷ NetBIOS name service

⁶⁸ datagram service

⁶⁹ NetBIOS datagram service

⁷⁰ session


⁷¹ session service

⁷² NetBIOS session service

⁷³ NetBIOS Name Server

⁷⁴ Name Server

⁷⁵ mapping

XNS⁷⁶ e TCP/IP

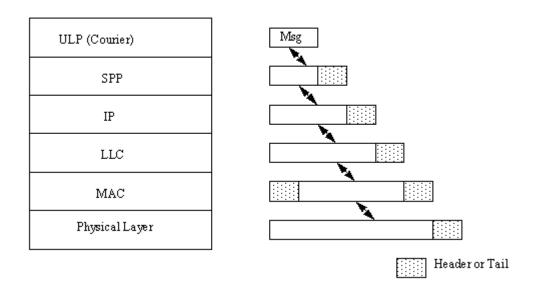
Lo Xerox⁷⁷ Network System⁷⁸ era ampiamente usato in passato e ancora conserva una ragionevole percentuale delle reti. XNS è popolare poiché Xerox rilasciò il codice al pubblico dominio⁷⁹, facendone un sistema valido al punto di vista dei costi.

XNS può essere usato con IP come mostra la figura seguente. Il Sequenced⁸⁰ Packet Protocol⁸¹ (SPP⁸²) è sopra lo strato IP, fornendo alcune funzioni TCP, sebbene non sia un protocollo completo. Nello strato ULP vi è il protocollo Courier^{83 84}, che fornisce i servizi degli strati di presentazione^{85 86} e sessione^{87 88}.

77 Xerox

⁷⁶ XNS

⁷⁸ Xerox Network System


⁷⁹ public domain

⁸⁰ sequenced

⁸¹ Sequenced Packet Protocol

⁸² SPP

⁸³ Courier

XNS usa il termine Internet Transport⁸⁹ protocols⁹⁰ per far riferimento al set di protocolli usati , incluso IP. Fra questi vi è Routing Information Protocol⁹¹(RIP⁹²) ed un protocollo di errore simile al Internet Control Message Protocol⁹³ (ICMP⁹⁴).

⁸⁴ Courier protocol

⁸⁵ presentation layer

⁸⁶ presentation

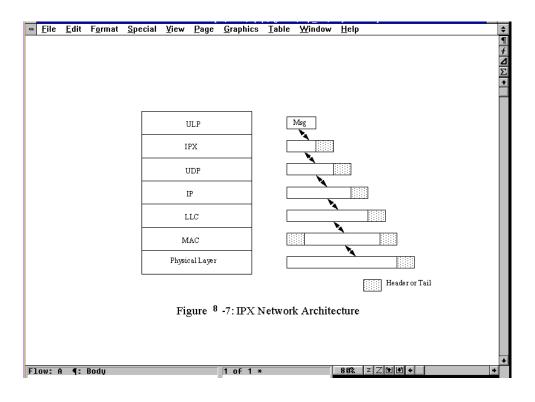
⁸⁷ session layer

⁸⁸ session

⁸⁹ Transport

⁹⁰ Internet Transport Protocols

⁹¹ Routing Information Protocol


⁹² RIP

⁹³ Internet Control Message Protocol

^{94 &}lt;u>ICMP</u>

IPX⁹⁵ e UDP

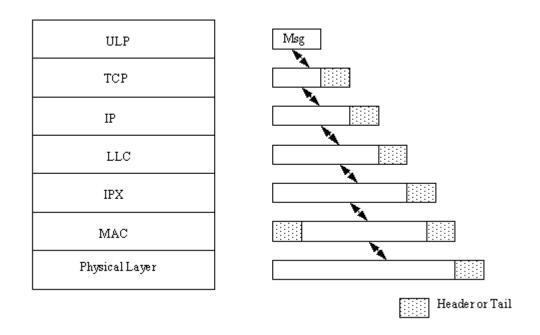
Il prodotto per networking⁹⁶ ⁹⁷ NetWare⁹⁸ della Novell⁹⁹ ha un protocollo simile a IP chiamato Internet Packet Exchange¹⁰⁰ (IPX)., basato sul XNS della Xerox. L'architettura di IPX è mostrata in figura seguente . IPX in genere usa UDP per un protocollo non orientato alla connessione, sebbene TCP possa essere usato quando combinato con LLC tipo1.

95 <u>IPX</u>

networking products

⁹⁶ networking

⁹⁷ networking product


⁹⁸ NetWare

⁹⁹ Novell

¹⁰⁰ Internet Packet Exchange

la stratificazione (con IPX sopra UDP) assicura che gli header IP e UDP non siano influenzati, con le informazioni IPX incapsulate come parte del messaggio. Come con latri protocolli, una mappatura è necessaria tra gli indirizzi IP e gli indirizzi IPX¹⁰¹. IPX usa numeri di rete e di host di 4 e 6 byte rispettivamente. Essi vengono convertiti quando sono passati ad UDP.

È possibile riconfigurare la rete per usare reti IPX usando TCP invece di UDP e sostituendo il protocollo non orientato alla connessione LLC tipo 1. questo da luogo alla architettura della figura seguente

Quando si usa questa architettura gli indirizzi IP sono mappati usando ARP:

.

¹⁰¹ IPX addresses

ARCnet¹⁰² eTCP/IP

ARCnet è ampiamente usato per le LAN e vi è un RFC per usarlo con IP. L'architettura è simile a quella di reti basate su IPX ma con ARCnet che rimpiazza IPX, come mostrato nella figura seguente. I massaggi provengono da IP e sono incapsulati in datagrammi ARCnet.

UN posizionamento speciale del datagramma IP dietro all'area dati client dell'header ARCnet assicura che è mantenuta la compatibilità IP¹⁰³ se il messaggio deve uscire dalla rete ARCnet (attraverso un convertitore¹⁰⁴). Gli indirizzi IP sono mappati agli

¹⁰³ IP compatibility

16

¹⁰² ARCnet

¹⁰⁴ converter

indirizzi ARCnet¹⁰⁵ usando ARP. Il protocollo supporta anche RARP¹⁰⁶ in qualche misura.

Reti FDDI¹⁰⁷

La Fiber¹⁰⁸ Distributed Data Interface¹⁰⁹ ¹¹⁰ ¹¹¹ (FDDI) è una rete ad alta velocità¹¹² ¹¹³ ¹¹⁴definita dal ANSI¹¹⁵ che usa cavi a fibra ottica¹¹⁶ ¹¹⁷ ¹¹⁸ ¹¹⁹ come mezzo di trasporto¹²⁰. FDDI sta raggiungendo forte supporto a causa dell'elevato throughout¹²¹ che può raggiungere. PER TCP/IP, FDDI usa un'architettura a strati come le altre

¹⁰⁵ ARCnet addresses

¹⁰⁶ RARP

¹⁰⁷ FDDI

¹⁰⁸ Fiber

¹⁰⁹ Data Interface

¹¹⁰ <u>Distributed Data Interface</u>

¹¹¹ Fiber Distributed Data Interface

¹¹² high speed network

¹¹³ high-speed

¹¹⁴ speed

¹¹⁵ ANSI

¹¹⁶ fiber optic cable

¹¹⁷ fiber-optic

¹¹⁸ optic

¹¹⁹ cable

¹²⁰ transport medium

¹²¹ throughout

reti discusse. FDDI differisce leggermente da altri mezzi poiché vi sono due sottostrati¹²² per lo strato fisico.

Lo schema di indirizzamento¹²³ di FDDI è simile a quello di altre reti Ethernet, richiedendo una semplice mappatura, come visto per i sistemi Ethernet. IP ed ARP possono essere entrambi usati con FDDI. IP è usato con il servizio non orientato alla connessione LLC tipo 1.

L'ampiezza del frame per FDDI è posta a 4500 byte¹²⁴, incluso l'header e altre informazioni di framing¹²⁵. Dopo vi sono 4470 byte disponibili per i dati . questa ampia grandezza del pacchetto può creare problemi con qualche gateway, così l'instradamento per i pacchetti FDDI deve essere scelto con cura per prevenire troncamenti o corruzione del pacchetto da parte di un gateway che non può gestire l'ampiezza del pacchetto.

X.25¹²⁶ e IP

Le reti X.25 modificano l'architettura della rete utilizzando uno strato OSI TP4¹²⁷

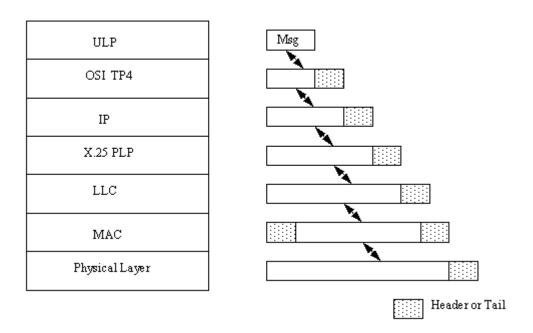
128 sopra lo strato IP, e lo strato X.25 Packet Layers Procedures 129 130 (PLP¹³¹) sotto

¹²³ addressing scheme

^{122 &}lt;u>sublayers</u>

¹²⁴ bytes

¹²⁵ Framing informations


¹²⁶ X.25

¹²⁷ OSI TP4

¹²⁸ TP4

¹²⁹ Packet Layer Procedures

IP. Questo è mostrato nella figura seguente. TP4 è un protocollo simile a TCP che non usa identificatori di porta. I campi destinazione¹³² e sorgente¹³³ nel header sono i transport service access point¹³⁴ ¹³⁵ (TSAP¹³⁶). TP4 è più complesso di TCP, il che lotta contro il protocollo.

X.25 non è usato spesso in una LAN ma è usato come connessione ad una rete a commutazione di pacchetto 137 138 139. Un RFC internet definisce le regole per la

¹³⁰ Procedures

¹³¹ PLP

¹³² destination

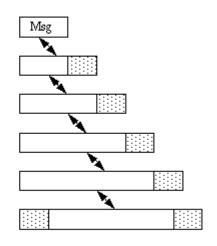
^{133 &}lt;u>source</u>

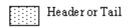
¹³⁴ transport service access points

¹³⁵ access points

¹³⁶ TSAP

¹³⁷ packet-switched network


¹³⁸ packet-switched


commutazione dei pacchetti¹⁴⁰ per X.25, incluso i limiti per i datagrammi IP (576 byte) e circuiti virtuali¹⁴¹ ¹⁴² ¹⁴³.

ISDN¹⁴⁴ e TCP/IP

Integrated Services Digital Network¹⁴⁵ (ISDN) fornisce una rete a commutazione di pacchetto TCP/IP. L'architettura è mostrata nella figura seguente. IP non è nello stack degli strati poiché è usualmente incorporato in CLNP¹⁴⁶.

ULP
OSI TP4
CLNP
X.25 PLP
LAPB
EIA 232/V Series

¹³⁹ switched

¹⁴⁰ packet switching

¹⁴¹ virtual circuits

¹⁴² circuits

¹⁴³ virtual

¹⁴⁴ ISDN

¹⁴⁵ Integrated Services Digital Network

¹⁴⁶ CLNP

ISDN ha un'architettura più complessa della maggior parte delle reti, rimpiazzando gateway e router con terminal adapter¹⁴⁷ 148 149 e nodi ISDN¹⁵⁰ 151.

Switched Multi-Megabit Data Services ¹⁵²e IP

Il sistema Switched Multi-Megabit Data Services (SMDS¹⁵³) è un servizio pubblico a commutazione di pacchetto non orientato alla connessione che fornisce un grande throughput¹⁵⁴ con elevata ampiezza dei pacchetti.(fino a 9188 byte). SMDS usa un meccanismo di accesso subscriber-to-network e network-to-subscriber per il controllo di flusso.

SMDS supporta sottoreti multiple logiche IP¹⁵⁵ (LIS), che possono essere gestite separatamente ma trattate come una singola unità da SMDS. Questo metodo richiede che tutte le sottoreti abbiano lo stesso indirizzo IP.

¹⁴⁷ terminal adapters

¹⁴⁸ adapters

¹⁴⁹ terminal terminals

¹⁵⁰ ISDN nodes

¹⁵¹ nodes node

¹⁵² Switched Multi-Megabit Data Services

¹⁵³ SMDS

¹⁵⁴ throughput

^{155 &}lt;u>logical IP subnetworks</u>

Asynchronous Transfer Mode (ATM) e BISDN¹⁵⁶

Due nuovi protocolli per internet ad alta velocità che stanno diventando popolari sono ATM e BISDN. L'architettura della macchina dell'utente è simile all'architettura TCP/IP, sebbene possano essere aggiunti altri strati per fornire nuovi servizi, come capacità video 157 e suoni 158.

I router, gateway o altri dispositivi che accedono alla rete ad alta velocità sono anch'essi molto complessi. Chiamati terminal adapter come in ISDN, essi forniscono una interfaccia sofisticata tra gli strati utente e gli strati di adattamento¹⁵⁹, che sono specifici per ogni applicazione.

Windows e TCP/IP

L'approccio usato da Windows è simile a quello usato da Windows NT e OS/2, così la sua conoscenza è utile per molti sistemi operativi su apparecchi client comuni nelle LAN di oggi.

Windows raffina l'architettura di rete usata in Windows for Workgroups¹⁶⁰ e Windows NT¹⁶² los, dando per risultato maggiori prestazioni¹⁶⁴ e affidabilità¹⁶⁵, così

22

¹⁵⁶ Broadband Integrated Services Digital Network

¹⁵⁷ video

¹⁵⁸ sound

¹⁵⁹ adaption layers

¹⁶⁰ Windows for Workgroups

¹⁶¹ Workgroups

¹⁶² Windows NT

¹⁶³ NT

come soddisfacimento¹⁶⁶ per le richieste di diverse reti come il supporto di protocolli multipli. Poiché Windows supporta molti protocolli differenti in versioni Virtual Mode Driver¹⁶⁷ (VxD¹⁶⁸) a 16 e 32 bit, l'architettura deve fornire flessibilità per accomodare un certo numero di strutture.

L'architettura Windows è a strati, un'architettura a strati è la più comune struttura di una rete. L'architettura di rete usata in windows 95 è nota come Windows Open Services Architecture¹⁶⁹ 170 171 172 (WOSA¹⁷³) di Microsoft¹⁷⁴. WOSA fu sviluppato per abilitare le applicazioni a lavorare con diversi tipi di reti, ed include un set di interfacce disegnate per abilitare la coesistenza di diversi componenti di rete.

I componenti di rete software¹⁷⁵ di Windows sono mostrati nei loro strati rispettivi nella figura seguente.

164 performance

¹⁶⁵ reliability

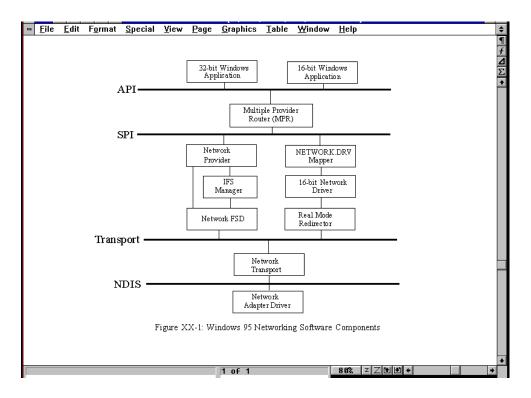
¹⁶⁶ catering

¹⁶⁷ Virtual Mode Driver

¹⁶⁸ VxD

¹⁶⁹ Windows Open Services Architecture

¹⁷⁰ Open Services Architecture


¹⁷¹ Open Services

¹⁷² Open

¹⁷³ WOSA

¹⁷⁴ Microsoft

¹⁷⁵ networking software components

◆ API¹⁷⁶: La Application Programming Interface¹⁷⁷ standard Win32¹⁷⁸: la API gestisce operazioni su file remoti¹⁷⁹ ¹⁸⁰ ¹⁸¹ ¹⁸² ¹⁸³ e risorse remote¹⁸⁴ (stampanti¹⁸⁵ ed altri apparecchI). Le API Win32 sono usate per applicazioni di programmazione¹⁸⁶.

¹⁷⁶ API

¹⁷⁷ Application Programming Interface

¹⁷⁸ Win32

179 remote file operations

¹⁸⁰ remote file

¹⁸¹ <u>file</u>

182 remote

183 operations

¹⁸⁴ remote resources

185 printers

186 programming applications

- Multiple Provider Router¹⁸⁷ ¹⁸⁸ ¹⁸⁹ ¹⁹⁰ (MPR¹⁹¹): il MPR instrada tutte le operazioni di rete per Windows, così come implementa funzioni di rete comuni a tutti i tipi di rete. Le API comunicano direttamente con MPR. La MPR è una DLL¹⁹² a 32 bit in modo protetto¹⁹³ ¹⁹⁴ ¹⁹⁵ ¹⁹⁶.
- Network Provider¹⁹⁷: implementa l'interfaccia del provider del servizio di rete.
 Solo MPR può comunicare con il network provider. Il network provider è una
 DLL a 32 bit in modo protetto.
- Manager IFS¹⁹⁸ ¹⁹⁹: il manager IFS instrada richieste di filesystem all'appropriato driver di filesystem²⁰⁰ (FSD²⁰¹)

187 <u>Multiple Provider Router</u>

¹⁸⁸ Provider Router

¹⁸⁹ Provider

¹⁹⁰ Router

¹⁹¹ MPR

¹⁹² DLL

¹⁹³ Protected Mode DLL

¹⁹⁴ Protected Mode

¹⁹⁵ protected

¹⁹⁶ mode

¹⁹⁷ Network Provider

¹⁹⁸ IFS Manager

¹⁹⁹ <u>IFS</u>

²⁰⁰ Filesystem driver

²⁰¹ FSD

- Network Filesystem Driver ²⁰²(FSD): FSD implementa le caratteristiche del particolare filesystem remoto²⁰³. Il FSD può essere usato dal Manager IFS quando il filesystem della macchina locale e della macchina remota coincidono. Il FSD è VxD a 32 bit in modo protetto.
- Network Transport: il network transport²⁰⁴ è un VxD che implementa il protocollo di trasporto specifico dell'apparecchiatura. La rete FSD si interfaccia con il trasporto di rete , usualmente con una mappatura uno ad uno .
- Network Driver Interface Specification²⁰⁵ ²⁰⁶ ²⁰⁷ ²⁰⁸ ²⁰⁹ ²¹⁰(NDIS): una specifica software indipendente dal venditore che definisce le interazioni tra il trasporto di rete e il driver dell'apparecchiatura.
- Network Adapter Driver²¹¹ ²¹²: il driver VxD adattatore di rete controlla il reale apparecchio di rete

²⁰² Network Filesystem Driver

²⁰³ remote filesystem</sup>

²⁰⁴ network transport

Network Driver Interface Specification

²⁰⁶ Network Driver

²⁰⁷ Driver Interface Specification

²⁰⁸ Driver

²⁰⁹ Interface

²¹⁰ Interface Specification

²¹¹ Network Adapter

²¹² Network Adapter Driver

Uno degli aspetti principali di Windows è l'inclusione del supporto per protocolli multipli concorrenti. Il protocollo di default è IPX/SPX di NetWare. Sono inclusi anche i driver NetBIOS e NetBEUI, e un completo VxD a 32 bit per TCP/IP. Tutti questi driver sono abilitati al plug-and-play²¹³, permettendo il loading e unloading dinamico.

Servizi TCP/IP opzionali

Le reti TCP/IP offrono una serie di servizi opzionali che utenti ed applicazione possono usare. Questi servizi e le porte loro assegnate sono elencati nella seguente tabella

Service	Port	Description
Active Users ²¹⁴	11	Returns the names of all users on the remote system
Character Generator ²¹⁵	19	Returns all printable ASCII characters
Daytime ²¹⁶	13	Returns the date and time, day of the week, and month of the year
Discard ²¹⁷	9	Discards all received messages
Echo ²¹⁸	7	Returns any messages
Quote of the Day 219	17	Returns a quotation

²¹³ plug-and-play

27

²¹⁴ Active Users

²¹⁵ Character Generator

²¹⁶ Daytime

²¹⁷ Discard

²¹⁸ Echo

Active Users

Il servizio Active Users restituisce un messaggio all'utente originante che contiene una lista di tutti gli utenti attualmente attivi sulla macchina remota. Il comportamento di TCP e UDP è il medesimo. Quando richiesto, il servizio controlla la porta 11 e, dopo avere stabilita una connessione, risponde con una lista degli utenti attivi e poi chiude la porta. UDP manda un datagramma e TCP usa la connessione stessa.

Character Generator

IL Character Generator è disegnato per mandare un set di caratteri ASCII. Dopo il ricevimento di un datagramma (i contenuti del quale vengono ignorati), il servizio restituisce di tutti i caratteri ASCII stampabili. Il comportamento di TCP e UDP è leggermente diverso.

IL Character Generator di TCP effettua il monitoraggio della porta 19 e quando connesso ignora ogni input e manda un flusso di caratteri finché la connessione si interrompe. L'ordine dei caratteri è fissato. Il Character Generator UDP attende alla porta 19 un datagramma (UDP non crea connessioni) e risponde con un datagramma

Ouote of the Day

²²⁰ Time

contenente un numero random²²¹ di caratteri. Possono essere inviati fino a 512 caratteri.

Sebbene questo servizio possa sembrare privo di utilità, esso a scopi diagnostici. Esso assicura che una rete possa trasferire in maniera appropriata tutti e 95 i caratteri ASCII stampabili, e può essere usato per testare stampanti.

Daytime

Il servizio Daytime restituisce un messaggio con data e ora corrente. Il formato che usa è giorno²²² ²²³della settimana, mese²²⁴ ²²⁵dell'anno, giorno del mese²²⁶, ora e anno²²⁷. L'ora è specificata nel formato HH:MM:SS. Ogni campo è separato dagli altri mediante spazi.

Sia TCP che UDP controllano la porta 13 e, dopo aver ricevuto un datagramma, inviano il messaggio. Il servizio può essere usato per diversi scopi come il settaggio del calendario di sistema e degli orologi per minimizzare le variazioni. Esso può anche essere usato dalle applicazioni.

²²² day

²²¹ random

²²³ day of the week

²²⁴ MOnth

²²⁵ month of the year

²²⁶ day of the month

²²⁷ <u>year</u>

Discard

Il servizio Discard semplicemente scarta tutto quello che riceve. TCP attende alla porta 9, mentre UDP riceve datagrammi da quella porta. Ogni cosa che arriva viene ignorata. Non viene inviata alcuna risposta.

Potrebbe sembrare un servizio senza alcun senso, ma può essere utile per instradare messaggi test durante il setup del sistema²²⁸ e la configurazione²³⁰. Può essere anche usato dalle applicazioni in luogo del servizio di scarto del sistema operativo.

Echo

Il servizio Echo restituisce tutto quello che riceve. È chiamato attraverso la porta 7. con TCP esso semplicemente restituisce tutto quello che arriva attraverso la connessione, mentre UDP restituisce un datagramma identico (fatta eccezione per gli indirizzi sorgente e destinazione). L'eco continua finché la connessione della porta termina o non sono ricevuti più datagrammi.

Il servizio fornisce un'ottima diagnostica sul funzionamento appropriato della rete e dei protocolli stessi. Il tempo di turnaround²³¹ fra ricevere e inviare l'eco fornisce un utile metodo per i tempi di risposta²³² e latenza²³³ ²³⁴ all'interno della rete.

230 configuration

30

²²⁸ system setup

²²⁹ setup

²³¹ turnaround

²³² response time

²³³ latency time

Quote of the Day²³⁵

Il servizio restituisce una citazione²³⁶ da un file di citazioni²³⁷, selezionandone in maniera casuale una al giorno quando arriva una richiesta sulla porta 17. Se non esiste un file di citazioni, il servizio fallisce.

Time

Il servizio time restituisce il numero di secondi che sono trascorsi dal 1 gennaio 1990. E' usata la porta 37 per attendere una richiesta (TCP) o un datagramma (UDP). Quando viene ricevuta la richiesta il tempo viene inviato come un numero a 32 bit. È l'applicazione che riceve a convertire il numero in una forma utile.

Il servizio è spesso usato per sincronizzare le macchine della rete o settare I clock di un'applicazione.

Uso dei servizi opzionali

Ai servizi opzionali si può accedere da ogni applicazione . gli utenti possono accedere a questi servizi usando Telnet. Un esempio è il seguente

\$ telnet merlin 7

Trying...

Connected to merlin.tpci.com

²³⁴ latency

²³⁵ guote of the day

²³⁶ quote

²³⁷ quotation

Escape character is '^T'. This is a message This is a message Isn't this exciting? Isn't this exciting? <Ctrl+T> \$ telnet merlin 13 Trying... Connected to merlin.tpci.com Escape character is '^T'. Tues Jun 21 10:16:45 1994 Connection closed. \$ telnet merlin 19 !"#\$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[[\]^_abcdefg "#\$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[[\]^_abcdefgh #\$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[[\]^_abcdefghi \$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[[\]^_abcdefghij %&'()*+,-./0123456789:;<=>?@ABCDEFGHJKLMNOPQRSTUVWXYZ[[\]^_abcdefghijk

&'()*+,-./0123456789:;<=>?@ABCDEFGHJKLMNOPQRSTUVWXYZ[[\]^_abcdefghijkl

'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[[\]^_abcdefghijklm

<Ctrl+T>

\$

in questo esempio una connessione alla porta 7 fa partire il servizio di echo. Ogni cosa digitata dall'utente viene riecheggiata immediatamente . poi una connessione alla porta 13 fornisce il servizio Daytime, mostrando la data e l'ora corrente.. la connessione viene interrotta del servizio una volta che I dati sono stati inviati. Poi si fa partire il Character Generator. Sia il servizio di echo che il character generator sono stati interrotti con la sequenza di break di Telnet Ctrl+T.